
The University of New South Wales

School of Computer Science and Engineering

Simultaneous Localisation and Mapping on
a Model Off-Road Vehicle

Sara Falamaki

Submitted in partial fulfilment of the requirements of the degree of Bachelor of
Engineering (Computer Engineering)

June 2005

Supervisor: Dr. Waleed Kadous

Assessor: Prof. Claude Sammut



2



Abstract

Simultaneous Localisation and Mapping (SLAM) is often seen as the first step to achieving
autonomous agents. This problem has been studied extensively in the last two decades but
still remains a fairly elusive goal.

This thesis presents the design, and implementation of a system to perform SLAM on a
Tamiya TXT-1 Monster Truck.

The results of an extensive literature survey is first presented, then the design and implemen-
tation of an algorithm to determine the trajectory of a moving robot, and simultaneously
produce a volumetric map of its environment is detailed. A framework for testing this
algorithm is designed and then used to obtain results to evaluate the solution.
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1 Introduction

Rescue missions searching for survivors in the aftermath of natural disasters, wars, and ur-
ban rescue situations such as fires and storms are becoming increasingly common. It is often
vastly preferable to send robots into hazardous situations rather than human rescuers.

Often the ability to utilise radio communication with such robots is limited; thus, au-
tonomous and semi-autonomous robots are preferable to those requiring expert human
control.

1.1 Motivation

This thesis aims to demonstrate the implementation of a system which allows Simultaneous
Localisation and Mapping to be done on the TXT-1 Monster Truck. This solution aims to
be useful in a Robocup Rescue arena. A photo of the truck is shown in 1.1.

The platform this solution is being deployed on has a number of interesting limitations.
There is limited room on the truck, so large sensors, like a laser range finder would simply
not fit on top of it. The usefulness of 2D SLAM solutions is limited; the truck will be
climbing up platforms and dealing with floors which are not smooth or uniform.

This means that the system must be able to work with small, lightweight sensors which are
rich enough in information so they can deal with 6-DoF motion. In the following sections,
the background for this project, Robocup rescue, is discussed, as is why SLAM is important
in both the context of this competition, as well as in broader search and rescue situations.

Figure 1.1: The TXT-1 Monster Truck
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1.1.1 Robocup Rescue

Robocup Rescue is a competition designed to stimulate new research into the important
problem of robot-aided disaster rescue at many levels, including [23, 25]:

• Multi-agent teamwork coordination

• Information Infrastructures

• Personal Digital Assistants

• Physical robotic agents for search and rescue

• Rescue strategies and decision support systems and

• Simulators and evaluation benchmarks.

The many research problems associated with this competition include dealing with noisy,
dynamic environments, incomplete information, logistics, long-range planning, team col-
laboration between multiple agents, and designing agents that can survive extraneous con-
ditions. By researching and developing agents that can perform autonomous search and
rescue operations, survive in places that are difficult or dangerous for humans to venture
into, and help rescuers by sensing important environmental measures, the job of recovering
from natural and man-made disasters will be made more efficient, saving thousands of lives
each year.

Robocup rescue is divided into two competitions and leagues, the Simulation League and
the Robotics and Infrastructure league.

The competition focuses on the Urban Search and Rescue (USAR) tasks of identifying
live victims, determining victim condition, providing accurate victim location and enabling
victim recovery, without causing damage to the victim or the environment.

Accurate victim identification is encouraged, as is the generation of accurate maps of the
environment. Autonomous behaviour is encouraged by penalising teams for each human
operator used. The teams compete in missions lasting for twenty minutes each, in one of
several arenas, rated based on their difficulty. The team with the highest cumulative score
wins. The following performance metric is used for scoring:

map
quality

+
victim

localisation
+

victim
tag

+
victim

situation
+

victim
safe

− arena
bumping

− victim
bumping

[1 +
numberof
operators

]2

(1.1)
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1.1.2 Why Simultaneous Localisation and Mapping?

In order for an agent to navigate an environment and locate victims, it needs a map. If the
environment is known a priori, the robot can be supplied with a map, which it will have
to localise in. Occasionally, the environment is unknown and no map can be supplied; this
is often the case with rescue and exploration missions, where a disaster could have altered
the makeup of the environment dramatically.

In such missions an agent that can generate an accurate map is critical. Before such a map
can be generated, the agent must be aware of where it is, in order to be able to plot what
it sees; as such, the mapping and Localisation must be done simultaneously.

Once a robot can perform SLAM, it can plot various features of the environment onto the
generated map, so that other robots, or human rescuers can locate and rescue survivors, or
extinguish physical threats.

SLAM is an important part of the Robocup Rescue League, because it underpins the capa-
bility of any of the other tasks being performed. Once SLAM can be done on small, hardy
and agile robots, they can precede other agents in a disaster site and help plan operations.

1.2 Goals and Contributions

The aim of this thesis is to design and implement SLAM on the TXT-1 Monster truck.

The goals of this work can be stated as:

• Build a map that allows for motion with 6-DoF.

• Accurately localise on the generated map, at each stage of the process.

• Use a sensor that is small in both weight and footprint.

Upon the completion of the project:

• A system for performing SLAM on the truck will be presented

• A testing framework for evaluating the performance of this system will be written

• The system will be evaluated using this framework

11



1.3 Outline of Thesis

Chapter 2 provides a literature review on current SLAM implementations. The prevailing
methods of performing SLAM are discussed, and these solutions are put into context.

Chapter 3 discusses other, related, uses of the SLAM technique. This chapter focuses on
3D SLAM, SLAM using vision, and multi-sensory SLAM. The different implementations
are evaluated in terms of this thesis’ design goals.

Chapter 4 presents the overall design of the algorithm used in this thesis. A step by step
analysis of decisions is presented, and a high-level view of the design is given.

Chapter 5 explains the algorithm used to implement SLAM on the monster truck. The
different stages of the algorithm are presented, and some alternative solutions are discussed.
Implementation decisions are justified.

Chapter 6 evaluates the performance of the algorithm, and presents results for different
scenarios, both real, and simulated using Povray. Test results for individual parts of the
algorithm, as well as the algorithm on the whole are presented in this chapter.

Chapter 7 inspects the results presented in the previous chapter and gives commentary and
analysis on the outcomes obtained. Strengths and weaknesses of the algorithm are discussed
in this chapter.

Chapter 9 talks about improvements that can be made to the solution, interesting ideas
that can be tried in order to improve it, and future work that would allow the solution to be
extended to perform other tasks, such as victim localisation and autonomous exploration.

Chapter 10 wraps up the thesis, and presents conclusions from previous chapters.

The appendix includes a user manual for the installation and deployment of the system.

12



2 Background

2.1 Simultaneous Localisation and Mapping (SLAM)

In order for a robot to achieve true autonomy, it must be able to localise itself in its
environment. Simultaneous Localisation and Mapping (SLAM) addresses this problem.

Current implementations of SLAM employ statistical methods such as Extended Kalman
Filters (EKF), Particle Filters, and other estimators to localise themselves with respect
to certain landmarks. Landmarks are detected using either range finders (laser, sonar,
infrared) or cameras (wide angle, CCD, stereo) [32].

There is a wide body of research addressing the SLAM problem. This chapter describes the
SLAM problem, and different approaches to it.

2.1.1 The SLAM Problem

The main challenges in building a SLAM algorithm can be summarised as [32]:

• Errors arising from measurement noise. Noise would be easy to compensate for if the
data measurements obtained were independent. Unfortunately all measurements will
be statistically dependent, meaning that we cannot simply take more measurements
to reduce error, and errors will accumulate.

• The high dimensionality of the data obtained. A detailed 2D floor plan requires the
storage of thousands of numbers, and a detailed 3D image of a building requires the
storage of millions of data points.

• The correspondence, or data association problem. This is the problem of determining
whether two sensor readings taken at two different times correspond to the same
object in the world.

• A changing environment. Most mapping algorithms assume a static world where all
changes to the world are interpreted as noise. If the mapping takes place over a longer
period of time, changes in the world become more significant (even closing an open
door will alter the world in such a way to confuse the robot).

• The Robotic Exploration problem. In order to be able to map it, a robot must
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explore its world autonomously. It must be able to know where to explore, and at
what point to retreat, being able to recover from unforeseen circumstances. This is a
hard problem.

As the Robocup Rescue (see section 1.1.1 on page 10 competition is in a static environment,
this thesis will not be dealing with the challenges of a dynamic environment. The main
focus will be on localising with respect to points observed, and plotting these points onto a
3D grid.

SLAM is a problem, not a solution, and as such, there are many different approaches to
solving it presented in a multitude of papers, in the last 20 years. These approaches can be
roughly classified into three major groups:

• Kalman Filter and Extended Kalman Filter based techniques using both bearing and
range measures.

• Bearing-only SLAM, using EKF together with other techniques, such as particle filters.

• Scan-Matching techniques, such as those using the Iterative Closest Point (ICP) al-
gorithm.

In the following section, the above techniques are introduced, and some examples of their
application is given. Most implementations use a combination of the above approaches,
and these implementations will be discussed in greater depth in the next chapter, Related
Work.

2.1.2 Approaches to SLAM

Kalman Filters and Extended Kalman Filters

In order to perform SLAM, information about nearby landmarks is obtained, and the robot
localises itself with respect to these. This information may then be augmented with odom-
etry data, and data from other sensors to create a map.

These landmarks can be distinctive contours, visual points of interest, or explicitly laid out
beacons.

Most algorithms for performing SLAM are probabilistic. This is because the problem of
robotic mapping is characterised by uncertainty and sensor noise [32]. Probabilistic algo-
rithms approach this problem by explicitly modelling both the sensors and the different
sources of noise. Bayes rule is the principle underlying these systems, giving the probability
of observing a particular measurement d, under a hypothesis x,

p(x|d) = ηp(d|x) · p(x)
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A Bayes filter extends Bayes rule to temporal estimation problems, by recursively estimating
posterior probability distributions over quantities that are not directly observable. This
recursiveness means the time per update is constant, enabling a Bayes filter to integrate
information indefinitely. Kalman filters, hidden Markov models, dynamic Bayes networks,
and partially observable Markov decision processes are closely related to Bayes filters. A
Bayes filter allows simultaneous estimation of the map model, and the robots pose in the
environment.

Kalman filters are Bayes filters that represent posteriors with Gaussian distributions. Gaus-
sian distributions can be represented compactly with a small number of parameters. In
robotic mapping, these are the robots pose and the map.

Three basic assumptions underly the Kalman filter model:

• The next state function must be linear with added Gaussian noise.

• The same characteristics must apply to the perceptual model.

• The initial uncertainty must be Gaussian.

Theoretically, if the above conditions hold, a Kalman filter based approach will always
converges. Additionally, as it stores the uncertainty of the entire map, it aids navigation
and exploration.

An Extended Kalman Filter (EKF) is a modification of the Kalman filter which can handle
nonlinear dynamics and nonlinear measurement equations. The EKF combines the model
of the system dynamics with noisy sensor data.

EKF SLAM requires each landmark to be observed infinitely many times, and the resulting
map only shows the landmarks observed. Any additional information (such as the placement
of walls) must be obtained by other means, usually with the help of a laser range finder, or
sonar sensors.

This approach is usually applied to robots moving on flat terrain, in other words, 2D
SLAM. Odometry information is used to estimate the robots position, and this allows for
only planar motion, with 3 degrees of freedom (translation and rotation in a 2D plane).
There has been approaches using Kalman filters (together with stereo vision) to do SLAM
in 3D. The implementation in [1] extends the Kalman filter by embedding the standard
deviation of the terrains curvature, which it obtains using additional sensors.

There is a vast body of literature dealing with performing SLAM using Laser range finders
(such as SICK), discussing optimisations that deal with the problems mentioned above and
in the previous section.

Montemerlo et al have developed a technique called FastSLAM [19] which addresses the
issue of complexity, as well as the data association problem. This approach uses a particle
filter (PF) to factor the full SLAM posterior into a product of the robot path posterior. The
time taken to factor the observations into FastSLAM scales logarithmically to the number
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of landmarks, furthermore, FastSLAM samples potential data associations as well, enabling
it to be used in environments with highly ambiguous landmark identities.

Building on this technique, Nieto et al use multiple hypothesis tracking (MHT) [22] along
with a Nearest Neighbour Filter (NNF) to further handle uncertainty in the data association
problem.

The data association problem is discussed in a paper by Hähnel et al [12]. This paper
seeks minimise data association uncertainty by establishing data associations lazily instead
of using a more naive maximum likelihood (ML) heuristic. Once a wrong choice has been
made using incremental ML, there is no chance of recovery. By using a tree search to
consider alternative data associations, not just for the current increment, but previous ones
too, this brittleness is circumvented. Instead of maintaining just a single path in the data
association tree, this approach maintains an entire frontier. This approach seems to be
successful in resolving ambiguities in the map.

Most solutions which use the canonical Kalman filter only map the world in two dimensions.
These solutions can map corridors and smooth passageways, but are usually unsuited to
undulated terrain.

Bearing-only SLAM

Traditionally SLAM has been performed using sensors providing both range and bearing.
These sensors were traditionally sonar, but more recently laser range finders are increasingly
employed.

It’s desirable to be able to perform SLAM using just bearings, as this allows for the use of
much cheaper, and more compact vision sensors. Using a camera, one can guess bearings,
and judge relative depths of objects, however, in order to get a realistic scale, the algo-
rithm must be initialised with known parameters. EKF SLAM cannot deal with feature
initialisation unaided.

The critical problem with initialisation is, as a single measurement does not constrain a
feature location [2], at least two measurements are required. If these two measurements are
taken sequentially, there is insufficient baseline to make a good location estimate, unless
more constraints are placed on the measurements (for example, if a stereo camera is used,
the distance and angle between these measurements is fixed).

A possible solution is using non-linear batch initialisation methods, observing a feature
multiple times, until its position exceeds a certainty threshold. The problem here becomes
evaluating this certainty: when do we know we’ve seen it enough times? The object may
have been observed multiple times from the same position, giving away little in the way
of certainty. A technique which uses non-linear batch adjustment by tying it into a con-
ventional EKF framework is bundle adjustment. Bundle adjustment places a condition to
measure when to do feature initialisation.
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Bailey [2] presents a method for initialising features by retaining past vehicle pose estimates
in the SLAM state vector until the estimates for them become well-conditioned. He defers
feature initialisation until the probability density function (PDF) of its location closely
resembles the Gaussian approximation obtained from a Jacobian-based linearised trans-
form. These two distributions are compared using the Kullback-Leibler distance measure,
or relative entropy.

EKF SLAM assumes that the estimates have small errors, and are near-Gaussian. This
method meets this requirement, as new features which do not have Gaussian PDFs will not
be initialised. The sequence the feature estimates are incorporated does not matter, and
this method retains consistency despite integrating features out of order. What this paper
does not address however is the data association problem, which it defers to future work.

Another approach to this problem is presented by Davison [9, 8] with the use of a single
camera. A state vector is used to represent each feature detected and a covariance matrix is
used to represent uncertainties for all the quantities in the state vector. Feature estimates
in the state vector can be freely added or removed. The state vector, and the covariance
matrix are updated in two steps:

1. During motion, a prediction step uses a motion model to calculate how the camera
moves and how its position uncertainty increases.

2. When feature measurements are obtained, a measurement model describes how map
and robot uncertainty can be reduced.

The key idea here is that clusters of close features are highly correlated to one another, their
relative positions are well known, but their position in the world reference frame is uncertain.
By deferring their localisation until more information is gathered about their actual position
in the world, they can eventually be plotted with relative accuracy. Like Bailey’s approach,
Davison et al estimate the exact position of a point by comparing Gaussian uncertainties,
however, instead of using point features, they use elliptical regions several pixels wide.

Scan-Matching Based Techniques

Although most SLAM implementations employ a probabilistic approach to localise indi-
vidual features on some sort of map, there are a class of SLAM algorithms which merge
different world views by estimating the rotation and translation of the robot. This is done
by iteratively moving points, such that the distance between all points in the different views
is minimised, thus geometrically aligning the views.

The Iterative Closest Point algorithm (ICP), first proposed by Besl & Mc Kay [3] is the
most common way of finding this transformation.

The ICP algorithm can be divided into 6 basic steps [28]

1. Selection of some set of points in one or both meshes.
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2. Matching these points to samples in the other mesh.

3. Weighting the corresponding pairs appropriately.

4. Rejecting certain pairs based on looking at each pair individually or considering the
entire set of pairs.

5. Assigning an error metric based on the point pairs.

6. Minimising the error metric.

Although EKF is a tried and tested technique for localising in two dimensions, it becomes
intractable with a very large set of features, and has to be heavily modified so it can deal
with the 6 degrees-of-freedom when mapping in 3D.

In the previous section the use of particle filters and bundle adjustment was discussed,
these techniques localise features (points, or small patches) in 3D space probabilistically.
Increasingly, solutions to SLAM are being published where instead of using the probabilistic
EKF model, which relies on error being both stochastic and Gaussian, attempt to match
scans of the world using ICP.

Each of these solutions requires the following steps:

1. Point acquisition: Points are usually acquired using a stereo camera [17] or using 3D
laser scans [6]

2. Feature detection: Often done using corner or edge detection algorithms

3. Feature pairing: Using Scale Invariant Feature Transform (SIFT) descriptors [29],
KD-Trees [20] or cross-correlation maximisation [17]

4. Finding Homogeneous Transform: Found using some variant of the ICP algorithms
registration phase

5. Integrating each frame into the 3D world map.

An ICP-based algorithm is implemented to do SLAM in this thesis.

2.2 Hardware

The visual sensor this thesis relies on is the stereo megapixel camera(MDCS) from Videre.
The STH-MDCS is a compact, low-power, synchronised digital stereo head with an IEEE
1394 digital interface. It consists of two 1.3 megapixel, progressive scan CMOS imagers
mounted in a rigid body, and a 1394 peripheral interface module, joined in an integral
unit. [34]
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It can mounted on a pan-tilt mechanism to facilitate 6 degrees of motion.

The implementation presented does not require any additional specialist hardware, assuming
a fairly fast processor, and plenty of memory are available on-board for real-time processing,
or off-line for processing at a later stage.

2.3 Software and Libraries

2.3.1 Small Vision System

In order to utilise the capabilities of the stereo camera, the images it produces need to be
rectified, and their depth determined. The Small Vision System [15] (SVS) software does
real-time stereo analysis on consumer hardware.

In order to produce a 3D point cloud, SVS needs to first find matching points in the two
images, and then apply image geometry to calculate disparity. The two main ways of doing
this are feature extraction, and small area correlation. With feature extraction, a number
of distinctive features are pinpointed, and then matched between the images; these are
often corners or edges, as such features remain somewhat invariant at different angles. The
major fault with using feature extraction is that finding features can be time consuming
to compute, and algorithms using features detection tend to produce sparse results. SVS
instead, uses area correlation. In this method, a small area is selected, and then compared
to other small areas in a search window in the alternate image. The extreme value of the
correlation at each pixel is selected, and used to determine the disparity of the pixel. Post
filters then clean up noise in the resulting disparity image.

Because of the way SVS calculates disparities, smooth, uniformly coloured, un-textured
surfaces are impossible to correlate, and SVS can not produce meaningful disparities for
points on such surfaces. As a result, if the camera sees a smooth surface, it will be able
to calculate the disparities and 3D point values at the edges, but the object will appear
hollow. Figure2.1 illustrates this.

Another consequence of this method is that shadows on smooth surfaces get picked up,
whereas the surface itself does not. It’s important to realise this when designing a system
that relies on SVS for points, as it can not be used to determine the presence of surfaces.
A robot doing SLAM with only these points has a good chance of running into walls.

A stereo camera set using SVS needs to be calibrated. The calibration process calculates
intrinsic camera parameters, so it can compensate for things like lens distortion when doing
rectification. Parameters to the algorithm also need to be set each time a camera is used,
catering for different environmental situations, such as the presence of multiple light sources,
and the distance from the objects seen. Correctly calibrating SVS for a camera rig is quite
a tedious process.
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Figure 2.1: SVS window and 3D display showing a cube. The smooth surfaces of the cube
are invisible.

2.3.2 Newmat

Many of the transforms in image algorithms require the use of matrices. The somewhat
deceptively named Newmat [7] library provides the matrix transforms needed, in particular,
it can be used to find Single Value Decompositions (SVDs) in the ICP algorithm. Being
fairly old, it is tried and tested, however, it doesn’t utilise many of the language features in
C++.

2.3.3 VTK

To test results, and present the algorithm, the points need to be visualised somehow. For Vi-
sualisation Toolkit (VTK) was used to facilitate this. VTK has bindings to many languages,
including C++ and Python. For this project, the Python bindings were used because this
avoids having to use Cmake (a make-like tool VTK uses to compile C++ code), and being
able to change the visualiser without needing to recompile it.
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2.3.4 Vigra

To do the feature extraction stage of the implementation, an imaging library that does Harris
corner detection and Canny edge detection was sought. Vigra [5] is a generic computer vision
tool library which can be used for both tasks.
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3 Related Work

Various research groups have been working on the SLAM problem since the 1980s, and
there is a constant stream of papers being published on the topic.

This thesis focuses on doing SLAM in 3D, and as such, the related work presented here
focuses mainly on solutions to the 3D SLAM problem, as well as those using vision based
techniques, especially the solutions published recently, in 2004 and 2005.

As in the background chapter, the works presented here are divided into three categories:
those using EKF techniques and variants thereof, those using bearing only measurements,
and those utilising the scan-matching techniques, such as the ICP algorithm. It should be
emphasised that this is not an exhaustive literature survey — the wealth of information out
there makes one impossible — nor are the categories presented here the only way one can
divide the various solutions to this problem. This chapter will however highlight some of the
more relevant theory, and current practice, and be used to justify design and implementation
choices made in subsequent chapters.

3.1 Kalman Filters and Extended Kalman Filters

SLAM with Omni-directional Stereo Vision Sensor

The paper by Kim et al [13] combines Structure From Motion and stereo vision to implement
an EKF based SLAM algorithm. The stereo vision is obtained using an omni-directional
camera.

This paper tries to address the correspondence problem in all vision based SLAM algorithms
by replacing feature detection with SFM, which doesn’t have a correspondence problem.
SFM however, cannot resolve scale, and the stereo vision complements it by providing
depth information. This is similar to the proposal made by Dillart et-al [10] which talks
about structure from motion without correspondence.

This implementation seems to have been tested in very limited environments, particularly
flat ones.
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SLAM- Loop Closing with Visually Salient Features

An extremely challenging problem in performing SLAM is finding loop closures, finding if
the robot is in an area that it has mapped previously.

This problem ties in with the problem of using odometry to calculate pose, as soon as the
robots position becomes erroneous, it is extremely hard to recover, and detect loop closure.
This is precisely the time that loop closure would be useful.

Most SLAM solutions take advantage of the accuracy of laser sensors. Laser based sensors
however, have a significant disadvantage. They are very information poor. In contrast,
vision based solutions, using cameras are very information rich, however, calculating exact
range and bearing measures from these sensors is still an exceedingly difficult task.

The implementation proposed in a paper by Newman and Ho [21] finds visually salient
features with wide baseline stability (they can be observed from different viewpoints while
still being recognisable) and encodes them using SIFT descriptors. Before a new feature is
added to the map, the algorithm queries this database of encoded visual features, and seeks
a match. If a match is found the loop is closed. Any SLAM algorithm can be used for the
localisation part of the problem, this particular solution uses a simple non-linear Kalman
filter.

This paper illustrates the advantage of combining traditional range-bearing laser sensors
with vision in order to obtain more information.

An Autonomous Robotic System for Mapping Abandoned Mines

In this paper by Ferguson et al [11] SLAM with lazy data association is used in combina-
tion with A* search to facilitate corridor following and mapping in abandoned mines not
reachable by people. Two laser range finders are used, one for 2D and the other for 3D
scanning. The 3D maps are projected on a 2.5D terrain map.

By combining these techniques robust system has been developed to search abandoned
mines. The authors have deployed their system in extreme conditions, some inaccessible by
people; and have obtained surprisingly good results.

The major reason that such an approach is impractical on the TXT-1 is that even a single
Laser range finder is far too big to fit on its chassis, two is just impossible.

3.2 Bearing-only SLAM

Up until recently, most of the SLAM algorithms implemented relied on the availability of
either laser, stereo vision , or sonar range finders [11, 19, 12, 16, 33, 32]. However, such
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devices are large and expensive and unsuitable for many applications. Being able to employ
SLAM techniques using only cameras is appealing, as cameras are cheap, compact and
flexible.

Active Vision

In their paper Davison et al [9] describe a technique for implementing SLAM using only a
30Hz camera waved around in the hand. The algorithm picks out points of high interest
and uses these features to localise. These features are often corners, or distinctive, well
localised small objects. Initially the depth of the feature is unknown.

A semi-infinite 3D ray into the map with an endpoint at the camera’s optical centre is
initialised, and it’s known that the feature lies somewhere along this line. By repeatedly
testing, many hypotheses are gathered about the point’s exact depth, and probabilities
evolve. The point is eventually plotted on a 3D map representing the search space.

The four corners of an A4 piece of paper are enough to bootstrap the system (they are
used to provide information on the scale of the map and the camera motion) and map-
management heuristics are used to decide when to initialise new features. The aim is to
keep a pre-defined number of features visible at all times. Features not reliably matched
repeatedly are deleted.

Although fairly successful, the Davidson(2003) system was limited by the camera they
employed. Because of the narrow field of view, the features that could be seen simultaneously
had to be close together, leading to uncertainty in the camera position estimates.

A subsequent paper [8] describes using a wide-angle camera instead, providing a far greater
field of view. By using a wide-angled lens, they are able to achieve better camera motion
estimation, have an increased range of movement and have an increased range of tractable
movement accelerations. At the moment, the technique is limited in that the camera must
stay roughly horizontal, as feature matching takes place through 2D template matching.

The only problem with using active vision based techniques in this context is that they
can’t be used for mapping, on their own. This is because the only things that appear on
the map are landmarks, which can be used for localisation, but provide very little in the
way of mapping an unknown environment.

3.3 Scan-Matching Based Techniques

3D Simultaneous Localisation and Modelling from Stereo Vision

Garcia and Solanas [17] present a 3D SLAM scheme that avoids statistically modelling either
the sensors or the map using a single stereo vision system. This system determines the 6-
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DoF self-motion without using odometry, and does not require any initial calibration.

The algorithm proposed can be outlined as follows:

1. Acquire 3D point Cloud

2. Find corresponding pairs of points, in adjacent images

3. Compute the rotation matrix and translation vector between the two images using
the registration phase of the ICP algorithm

4. Perform a 3D transform based on the pinhole camera model in order to integrate each
new acquired frame

Much of this thesis uses ideas presented in this paper, and as such, it will be discussed in
far greater depth in subsequent chapters.

Using Naturally Salient Regions for SLAM with 3D Laser Data

Cole et al [6] present an approach very similar to that found in [17], this time using a
laser range finder mounted on a motor driven reciprocating cradle. This setup allows the
collection of 3D laser range scans.

In this technique which is optimised for outdoor environments — where odometry doesn’t
yield useful information, and there is a significant absence of crisp walls, corners and geo-
metric surfaces — allows their robot “Marge” to move in terrain with motion with 6 DoF.
Like [17], this technique isn’t strictly feature based, it instead registers segments of 3D
data producing an egomotion transform. Where it differs from [17] is that instead of using
geometric feature detection on a 2D image obtained by a camera, it locates salient patches
in the laser scan.

Laser scans are segmented based on regions of local interest. The saliency of a region is
determined by looking at the changes in the distribution of normal directions in that area.
Multiple scans of the same region are required to compensate for the unevenness of laser
range data. A camera is used to “colourise” the points, aiding the pairing process, as well
as providing more informative maps. Correspondences are found using an approximate
KD-Tree, and the transform matrix is calculated using an algorithm similar to ICP.

This is a very interesting paper, as it uses a traditional sensor, a laser range finder, but
instead of using EKF, it uses a scan matching based technique to achieve very impressive
matches. The only problem with this implementation in the context of this thesis is that
there is no room for a laser range finder on the truck.
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4 Design

In the background and related work section, the various solutions to the SLAM problem
were divided into three categories. Those who use a combination of odometry data and
range-bearing laser sensors to build a probabilistic, 2D map of the world; those which use
bearing-only sensors such as cameras, in combination with the probabilistic Kalman Filter
approach to map features onto a 3D world map; and finally, those which use scan matching
or ICP to find transform which results in the greatest overlap between successive frames,
and use this transform to unify all acquired points into the one map.

The major drawbacks of the first set of solutions are that they map the world in only two
dimensions and rely on odometry. This makes them unsuitable for deploying in a non-
planar rescue environment, where the robot’s wheels will slip, and the robot will climb up
obstacles, rendering odometry information useless. A 2D map is also unsuitable for a robot
that needs to explore autonomously, how would it know whether it can climb up an obstacle,
or if has to go around it?

The second set of solutions doesn’t rely on odometry, and produces a 3D map. These
solutions employ small, lightweight, vision based sensors, which make them suitable for
use on the truck. The major problem with these solutions is that they only plot features
onto the map. In other words, they are good for localising, but will not produce a world
map suitable for navigation. Such solutions could potentially be complemented with range
sensors to produce some sort of grid, but on their own will not produce a 3D map.

This leaves the final set of solutions. Instead of mapping features and the uncertainties
associated with them, these solutions take a 3D scan of the world, and then use curve
matching, point matching or Structure From Motion(SFM) techniques to unify different
views of the world into on coherent world map. These solutions need both range and
bearing data, so if vision is to be used, a stereo camera is required.

This thesis uses ideas from this final set of solutions. The goals of this thesis are to:

• Build a map that allows for motion with 6-DoF.

• Accurately localise on the generated map, at each stage of the process.

• Use a sensor that is small in both weight and footprint.

A stereo vision with point-matching solution will meet the first criterion, as it will allow
the construction of a 3D map. Localisation can be performed by finding an homogeneous
transform for moving points found in one frame’s field of view to another’s; this localisation
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matrix represents the current position of the agent with respect to the origin; thus meeting
the second criterion. A stereo camera rig will easily fit on the truck, thus satisfying all three
criteria.

This thesis is modelled on the paper titled “3D Simultaneous Localisation and Modelling
from Stereo Vision” [17]. As mentioned in 3, this solution maps the world using a six stage
algorithm. Basically, at each iteration an image, and a corresponding 3D point cloud need
to be obtained, the salient features from the current frame need to be matched with those
of the preceding one and a transform function that moves each point in the current from to
the position of its matching point in the previous frame needs to be computed.

Once a transform is computed, it is multiplied by the transform in the preceding image, and
then applied to all the points in the current image. This recursive definition insures that
every point in the current frame is placed in the coordinate system of the initial frame in
the series. Finally, in the integration step of the algorithm the points in the current frame
undergo a 3D transformation that brings them closer to the points in a few of the previous
frames. This transform helps unify the points into a coherent image, and helps compensate
for small disparities between the transform obtained from ICP and the true transform.

The following design is based on the paper by Garcia et al, but modifications have been
made where their design has proved insufficient. This chapter will discuss some of the
design aspects associated with the algorithm proposed by Garcia and Solanas, and propose
some possible implementations. The following chapter will realise this design, and talk
about the practical issues associated with it. A thorough evaluation of this algorithm, and
modifications to it will be presented in the Results and Evaluation chapters.

4.1 Defining a World Model

The aim of this thesis is to generate a map of the environment surrounding the agent. To
do this, the agent’s world needs to be modelled. The world can be divided into a simple
object hierarchy:

• World: Consists of a map, the camera frames used to obtain it and the agents current
pose.

• Frame: Consists of the 2D bitmap images obtained from the camera, the corresponding
point cloud, and information about the characteristics of the images, for example, their
width and height.

• Point: Consists of a row and column coordinate representing its position on the 2D
bitmap image, a field representing its colour and optionally, X, Y and Z coordinates
representing its position as projected in 3D space.

Once the data structure is in place, the algorithm over it can be defined as in the following
sections.
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4.2 Obtaining point clouds

In order to be able to construct a map, information about the depth and the bearing of
the points observed is needed. Since space on the TXT-1 truck is quite limited, using a
laser range finder to find depth was not feasible. Since visual sensors are compact and
information rich, a camera was seen as a viable option.

Once decided on using a camera, the options were stereo vision and active vision. Active
vision works with a single lens by delaying the time a point is entered into the map until its
location is known above a certainty threshold. While the active vision technique is useful
for plotting landmarks in 3D space, the number of “features” it can track at once is quite
limited, making it unsuitable for constructing an occupancy grid without assistance from
other sensors.

Deducing distance information from a pair of cameras whose parameters are known is a
simpler task, which can be done independently of the rest of the algorithm. This means
that far larger sets of points can be dealt with because once a transform is calculated from
a few points in the set, it can be applied to all the 3D points calculated.

The main drawback of using stereo vision for this task is that deducing the distance from
smooth, un-textured objects is impossible. Further discussion about this problem can be
found in the results section.

In this implementation the a stereo camera from Videre Design is used, and the stereo
processing is done using the SVS software package from SRI International.

4.3 Filtering and selecting points

Once a set of 3D points have been obtained, they will need to undergo some pre-processing
before they are useful for mapping. This is because the stereo processing software is not,
and can not be perfect. It is quite prone to making mistakes where little texture is available,
at very close and very far distances, and where lighting and shadows make for erroneous
disparity calculations. At the very least, points that are at infinity, or are too close need to
be filtered out and discarded.

SVS samples points by using correlation matching in texture patches. This means that all
the points obtained are in areas with lots of texture. It also means that SVS cannot get
depth information for background areas around foreground areas. This issue is illustrated
in Figure 4.1 on the facing page.

In order to obtain accurate transforms, only stable points should be used, this often means
using only edge points, or corner points. Once the transform is calculated, all the 3D points
obtained can be transformed using it, but only using a subset of points to determine the
transform will make finding it both more accurate, and faster.
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Figure 4.1: SVS picking up the background with the block

There are many ways of choosing salient points. They can be classified as follows:

• Geometric Measures. Lighting, motion and different points of view can dramatically
alter the appearance of an object, however, the basic shape of an object tends to
remain the same. So long as they are visible, the relationship between the edges
or corners of an object are far more stable than other characteristics such as the
appearance of colours and textures on its body. Geometric measures take advantage
of this observation, and choose either edges or corners as salient features.

• Rarity Based Measures. Rarity based measures for finding salient points are based
on the assumption that saliency implies rarity. These measures look for unique fea-
tures, maximising the probability of the object given a measurement. The higher this
probability, the more distinguishing the feature.

• Complexity Measures. Relying on the assumption that in real images complexity
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is rare, such measures measure the local signal complexity, or unpredictability. Ro-
bust, modern filters such as SIFT rely on such measures. Obvious cases where the
assumption underlying this measure will not hold are fractals and textures.

In this thesis geometric measures are used to determine if a point is a salient feature.

Using only salient features is particularly important in this thesis for a number of reasons.
The algorithm works by correlating points from one frame’s point cloud with another’s,
then computing the spacial transform required to move one of the pair, into the position of
another. This transform is computed by moving all points towards each other, to minimise
their distance.

Stereo processing cannot guarantee the correct range and bearing for every point seen
through the lenses. In fact, only a small number of pixels have any sort of 3D information
associated with them, and only objects in the tend to have this 3D information computed
correctly. Foreground objects are usually “frilled” with parts of the background, and these
frills have incorrect range and bearing measurements. If the transform function was fed such
points, it would compute an incorrect transform, as it would try to minimise the distance
between non-existent, fairly randomly appearing, points. By using only points on edges or
corners, these points are avoided.

Another reason to use only salient points is because the points chosen need to be matched
over several camera frames. In order to be able to do this, the points chosen must be
minimally affected by lighting, and by camera angle.

4.4 Matching points

Once the points of interest are chosen, correspondences need to be found between frames.
These correspondences can be either computed based on the 2D images, or by matching
the points in 3D space. In this implementation this step is done using the 2D images, but
checks the 3D distance as a sanity measure.

4.5 Obtaining a transformation matrix

In order to localise, the agent needs to compute how far, and in which direction, it has
travelled. This information is also needed to plot the points it sees onto a map.

To find this information, a transform is computed using the pairings obtained in the previous
section. The Iterative Closest Point (ICP) algorithm is used to find this transform by moving
the points close together, until the distance between them is minimised.
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4.6 Integrating Points

To compensate for localisation errors inherent to the stereo processing system the integration
process adjusts the spacial position of the acquired 3D points. This stage takes advantage
of the redundancy derived from observing each point several times on the agent’s path.

Given any two frames, Frame a and Frame b, this stage moves every point in Frame a
into the coordinate system of Frame b. These points are then projected onto the image
associated with Frame b and for each point, the image in Frame b is searched until the pixel
with the highest normalised cross-correlation with search point is found. The position of this
pixel is then adjusted into the position of the point from Frame a in Frame b’s coordinate
system.

This process is done in both directions, for the last three frames observed.

4.7 Modelling and Visualising the Solution

Once the transform matrix has been calculated for a frame, and its points have been adjusted
by looking at its neighbours, its adjusted point-cloud, its 2D image, and its localisation
matrix are stored in the world map.

In order to view these points together, each point has to be multiplied by its frame’s
localisation matrix first. Points are then written to a file, which is parsed by a Python
VTK script so that they can be viewed.

4.8 Testing Framework

To be able to test and debug the algorithm, a way to control the many different parameters
that can occlude the true performance of the algorithm needs to be found.

If the camera is not calibrating properly, and SVS produces meaningless disparity values,
and this data is used to test the algorithm, the results obtained are equally meaningless –
garbage in, garbage out.

Equally, if the points are matched incorrectly in the matching phase, and this data is fed
into the next stage, and an incorrect transform is calculated, it’s very difficult to pinpoint
where the problem occurred.

The goals of the testing framework can thus be summarised as below:

1. Ensure data going into the algorithm at each stage is meaningful
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2. Be able to evaluate results by comparing them to some “ground-truth”

3. Be able to test each stage of the algorithm independently

To facilitate the achievement of goal 1, two sets of test data are generated. One set is
generated by carefully calibrating the camera, and recording a sequence of frames for testing,
with some attempt to control environmental factors such as lighting and noise. The points
are then checked to see if meaningful disparities have been obtained by SVS. The second
set is generated artificially, by ray-tracing and animating a scene using Povray. The images
obtained by this process are then fed into SVS to generate disparity information and point
clouds. This ensures noiseless, well lit data, which can be used to test the basic functionality
of each stage of the algorithm. If it works for this data, it can be modified to work for more
noisy data, if it doesn’t, it’s seriously broken, and needs to be fixed and debugged.

Measurements of the distances between the different objects on the real world scene are
taken so they can serve as a ground truth to compare the results with. The second way of
obtaining test data is particularly good at meeting goal 2, as the Povray files provide the
exact locations that the objects should be located at, and can be visualised by moving the
camera in different positions, allowing a good comparison.

The last goal of the test frame-work is independent testing. To do this, a set of unit tests
are developed to test each stage of the algorithm independently. This also helps assure
goal 1 is met, as it means that data distortion in the middle of the pipeline can be checked
for.
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5 Implementation

This chapter provides and overview of the various stages of the algorithm implemented and
discusses the data structures used, justifying design choices.

5.1 Modelling the World

The aim of this project is to represent the world in 3D. In order to do so, information about
the points that have been observed have to be retained, and stored in some sort of world
map.

The World class consists of a World Map, and operations to facilitate the addition of each
new Frame.

Each time the camera acquires a pair of images, the svs library process them into a 3D
cloud map, and a disparity map. The colour of each pixel, its rectangular coordinates and
its 3D coordinates, if known, are stored in a Point. A Frame is a collection of points, storing
information about each pixel, as well as the size and dimensions of the images. A Frame
can optionally detect features or edges in the stored image.

The world model can be graphically represented as in figure 5.1:

World Frame

World_Map PointType

1 N

1

N

Figure 5.1: Main classes in SLAM implementation

5.2 Localisation and Mapping

The main algorithm can be divided into six discrete, independent stages:
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1. Obtaining point clouds

2. Filtering and selecting points

3. Matching points

4. Obtaining a transformation matrix

5. Integrating points

6. Modelling the solution

Each of the above stages can be implemented in a number of different ways. In this chapter,
each stage will discussed, and the reasons for design decisions will be justified.

5.3 Obtaining point clouds

Given two identical cameras mounted rigidly such that the distance between their lenses
remains constant, a 3D projection of each pixel on the intersection of the images from
the lenses can be obtained, by extrapolating disparity information using the pinhole cam-
era model. This model is described in detail in section titled Integrating Points in this
chapter.

In order to obtain 3D points from the camera images, the software package SVS is used. For
each frame SVS generates four images, a left and right colour image as well as a grey-scale
image for each lens. It then uses the grey-scale image to calculate point disparities.

SVS is distributed as a set of binaries, some with graphical interfaces, which can be used to
collect images and point-clouds, and display them in 3D, as well as C++ header files and
libraries for linking with other code.

Initially, this phase of the algorithm was done in the main loop of the program, however, to
permit faster testing and isolate the code (SVS is prone to segfaults, debugging the project
with that as part of it would have been nightmarish), the data acquisition step was moved
out, into a separate program that generates binary files. These files are then read into the
main program, allowing the processing to be done off-line. Online processing is entirely
possible by simply moving the data acquisition loop back into the main program.

Before a camera can be used with SVS, it must be calibrated. This calibration step is
required to adjust various parameters of the algorithm to reflect the physical characteristics
of the camera. To calibrate the camera, a chequered board is placed at various angles and
distances in front of it, and the smallvcal program is run using the images obtained. The
software then tries to automatically generate a set of calibration parameters from observing
this images. In addition to this calibration step, parameters such as window size, the X
offset of the horopter, and the maximum disparity need to be set at run time. Getting
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these settings correct is quite a difficult task, it’s very easy to generate lots of data with
very little 3D information associated with it, or even worse, to generate a data set with lots
of incorrect 3D information.

SVS is capable of generating 3D points for any set of 4 images. In order to get better quality
3D points to facilitate testing, sets of images were created artificially, using Povray, and fed
into SVS. Using such data for testing allows modelling an ideal situation, free from noise
and lighting distortions, allowing a benchmark for performance to be set.

5.4 Filtering and selecting points

Two algorithms for feature detection were used. Using a Harris corner detector was proposed
in the paper by Garcia et al, and was the first option considered.

A Harris corner detector finds a corner’s “strength” by computing the locally averaged
moment matrix from the image gradients, then combining the eigenvalues of such matrices.
The maximum values indicate corner positions, in other words, corners are pixels with the
highest corner strength.

The cornerResponseFunction in the Vigra [5] imaging library is used to implement this
function.

One of the problems with using corner detection was that it yields too few points. Images
typically have few corners, and not all of these will be picked up. Scenes with mostly
rounded features would be particularly problematic with this approach. SVS too, typically
generates 3D points for less than 10% of the pixels in an image, this makes the problem
two fold, the corners that the Harris Corner detector picks up must have corresponding 3D
points, otherwise they have to be discarded. If ICP is run with too few points, it yields
inaccurate results, as these points are statistically more likely to not be exact matches.

In order to solve this problem, the corner detection was substituted with a Canny Edge
Detector [4], again, from the VIGRA library.

A Canny operator first smoothes the image using a Gaussian convolution, then applies a
2D first derivative operator to it, in order to highlight the points with high first spacial
derivatives. Edges give rise to ridges in the gradient magnitude image. The algorithm
then tracks these ridges, with certain thresholds, giving rise to edges in the output image.
Examples of the output of both the Canny edge detector and the Harris Corner detector
can be found in the results chapter.

Using an edge detector also reduces the problem with frills. In the previous chapter, Fig-
ure 4.1 on page 29 showed SVS picking up segments of the background along with the actual
foreground image. By only using pixels off edges in the algorithm, the problem of using
points which have incorrectly calculated 3D coordinates reduces, as edges tend to have a
better chance at having correctly calculated disparity values.
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5.5 Matching points

Once the features have been selected from the two consecutive frames, the points need to
be paired up, so a transform can be obtained. From here on, the previous frame is referred
to as Frame a and the current frame is Frame b.

For each feature in Frame a a 20x20 window of pixels around its location in Frame b is
searched. Since the rectangular coordinates of each 3D point are saved in the PointType
object, this search can be done in constant time. The 3D distance between the candidate
points and the current point are also checked and points lying further than 10 pixels away
are discarded.

The above operation yields a set of candidate features for each feature in Frame b. Prox-
imity alone is not a good indication of correlation, so at this stage, each candidates’ nor-
malised cross-correlation coefficient is found, and the candidate yielding the maximum cross-
correlation is picked as the match.

Cross-correlation is an algorithm for determining the location of corresponding image patches,
using grey levels, where a reference patch is moved over a search patch until the cross-
correlation coefficient is maximised. The cross-correlation coefficient is calculated as fol-
lows [27]:

∑
rRcR

[gR(rR, cR) − gR] · [gS(rR + ∆r, cR + ∆c) − gS ]√∑
rRcR

[gR(rR, cR) − gR]2 ·
∑

rRcR
[gS(rR + ∆r, cR + ∆c) − gS ]2

(5.1)

In this equation, gR and gS denote the arithmetic mean grey level in the reference image
and the part of the search image which is covered by the search image, respectively.

Since a list of candidate pixels has already been computed, the whole image need not be
searched. Instead, the cross-correlation coefficient for 5x5 squares centred at each of the
candidate pixels is computed. A vector of all cross-correlation coefficients for the candidate
points are computed this way.

This vector is then traversed, and the point that yields the maximum cross correlation is
picked as the matching point.

The coefficients of each of these pairings is stored in a vector, which is then traversed to find
the median coefficient as well as the Median Absolute Deviation(MAD). To compute the
MAD, the distance between each coefficient and the median is calculated, and the median
distance is found.

Once a median, MAD and vector of coefficients is found, this list is traversed, and and pairs
that have a coefficient greater than 2*MAD*median calculated are discarded. This process
usually eliminates about 20% of the pairings found. Once a vector of pairs is computed, it
is passed on to the next stage of the algorithm, which calculates the transform.
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Other ways of finding matching pairs can be substituted here without affecting the rest
of the algorithm. Some interesting ways to do this include using the recently published
SIFT algorithm [29] which can find matching features across a substantial number of affline
transforms including translations, rotations, addition of noise and changes in lighting. An-
other very common way to find pairs is by using a KD-Tree. A KD-Trees allows orthogonal
range searching by partitioning the point set. Each node in the tree is defined by a plane
through one of the dimensions that partitions the set into left/right and up/down sets. The
children are then partitioned into equal halves, and the algorithm continues until the height
of the tree is log n, at which point the nodes become leaves. This data structure allows
finding nearest neighbours in O(

√
n + k) time, where n is the number of points, and k is

the number of points in the result. Construction of a KD Tree takes O(nlogn) time, and
O(n) storage.

5.6 Obtaining a transformation matrix

Having generated a set of point pairs, a transform needs to be calculated which transforms
the points in the current set, into the coordinate space of the points in the previous set.
To do this, the Iterative Closest Point (ICP) algorithm’s registration phase is used. This
algorithm iteratively reduces the point-to-point distance between the features from each
point-cloud, using a least-squares minimisation function. This implementation uses the
Singular Value Decomposition (SVD) version of the ICP algorithm.

The ICP algorithm produces a 3x3 rotation matrix and a translation vector. These are
combined to produce a homogeneous transformation matrix which transforms a point in
the coordinate system of Frame b into those of Frame a:

aM̃b =


r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (5.2)

The code to find this transform was contributed by Raymond Sheh. His code was modified
slightly to fit in with this algorithms pipeline, as well as to use the data structures found
in the rest of the project.

The above registration phase will yield an exact transform if the input pairings are all
correct. If there are correspondences that are not correct, this algorithm will not minimise
the distances between all points to zero.

Since grey-level cross-correlation does not guarantee correspondence, this transformation
is only an approximation to the true relationship between the frames. In order to refine
this approximation, pairs that don’t meet two correspondence criteria are discarded. These
criteria are:
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1. The two corresponding points must be close enough in 3D space when they are referred
to in the same coordinate frame. In practice, a pair of points (aPi,

b Pi) is discarded
when their distance d(aPi,

b Pi) deviates from the median distance between all current
pairs by more than two MADs. The following formula is used to find this distance:

d(aPi,
b Pi) = ‖aPi −a M̃b ·b Pi‖ (5.3)

2. The pixels corresponding to the points need to be similar in colour. If the distance
between the RGB values of the pixels differs by more than twice the MAD of all
points, they are discarded.

Each time these criteria are checked, and the points that don’t pass them are discarded.
A new matrix aM̃b is generated with the remaining points. Garcia et al stop this iterative
process once no points are discarded. This means that sometimes all but 2 or 3 points will
be discarded, yielding random transforms. This rapid degradation of the size of the pairings
means that the results can potentially become very inaccurate, if the wrong pairings are
discarded. This was seen to happen fairly often in practice.

In order to improve the situation, the heuristic recommended by Garcia et al was relaxed
a bit in this implementation. Instead of stopping when there is no change in the size of the
pairings, this implementation stops when the difference in size is less than 10. This doesn’t
solve the above mentioned problem, but it does ease it somewhat.

Once the iteration is terminated the value of aM̃b is assigned to the final transform matrix
aMb which is used to generate the world transform for the frame b, Mb:

Mb = Ma ·a Mb (5.4)

Where Ma is the transform matrix of Frame a, the previous frame. This recursive definition
is valid since the initial Ma is the 4x4 identity matrix, i.e. the first frame is aligned with
the first camera position.

5.7 Integrating points

Once a transform matrix is obtained, the points in the frame need to be integrated into
the world model. The integration phase looks at several frames in the world, and compares
the points in the current frame to the ones observed before. Points in nearby frames are
checked against each other, and their positions are adjusted according to the information in
the current frame. This integration phase is best explained using the following pseudo-code
5.2:
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for(τ=0; τ<k; τ++){
integrate frame(current frame, frames[τ ]);
integrate frame(frames[τ ], current frame);
}

Figure 5.2: Pseudo-code for integrating frames

In this implementation, k is set to 3, in other words, each frame is integrated with three
frames before it, when these frames are available.

The first correspondence criterion considers that two cor-
responding points must be close enough in 3D space when
they are referred to the same coordinate frame. In practice, a
pair of points is discarded when their distance

deviates from the median distance between all
current pairs by more than two MADs. The second criterion
considers that pixels associated with two corresponding
points should have a similar color. In practice, if the distance
between the colors associated with both points deviates from
the median color distance between all pairs by more than two
MADs, the pair is also discarded.

In the end, the 6-DoF egomotion transformation that
expresses the 3D translation and 3D rotation between the
camera frames a and b is set to the last obtained during
the refinement process described above.

After egomotion has been determined, the absolute robot’s
localization with respect to the world frame, , is found
provided the localization at the previous position, , is
already known: . This recursive definition is
valid since the initial is the identity matrix (the world
frame is aligned with the first camera position).

B. 3D World Modeling

The 3D points acquired along the robot’s trajectory are
integrated into a single world model by applying the localiza-
tion matrices found at the egomotion stage. By taking
advantage of both the images associated with the point clouds
and the redundancy derived from observing the same physical
features from different viewpoints, the integration process is
able to adjust the spatial position of the acquired 3D points,
compensating thus for localization errors inherent to the ste-
reo vision process.

Let a be the camera frame at a certain position along the
robot’s path and the rectified image and 3D point
cloud acquired at that position. Every point is associated
with a color pixel located at row r and column c. The
localization matrix obtained at the egomotion stage
expresses the translation and rotation of the stereo camera
(and hence the robot) with respect to the world frame. Let
be the translation component of , which represents the
world coordinates of the center of the camera frame, and thus
the focus of the stereo camera.

The relationship between a 3D point
and the image coordinates where it is projected is
given by a function based on the pinhole camera model:

, in case of pure rota-
tion ( ), or in
case of combined translation and rotation. The three constants

, and are computed from any pair of available points
and : ,

and .

Since a 3D point represents a physical feature in
space, it can be observed from different viewpoints. Let us
consider a second camera frame b from where that feature is
also observed and let be its localization according to the
egomotion stage (Fig. 3). Point can be expressed in ref-
erence frame b as where

. Similarly, the focus of frame a is
expressed in frame b as: , which is mapped to a
pixel with image coordinates .
These coordinates may fall out of the image boundaries.

The straight line that joins pixels and is
known as the epipolar line (Fig. 3). Inaccuracies inherent to
the stereo vision process may lead to small localization errors
associated with , whose correct position, , must lie
in the straight line joining both and the focus of frame a,

. The projection of on image will lie at some point
along the epipolar line.

For recalculating the position of based on a second
camera frame b and both its associated rectified image and
point cloud, , the algorithm searches the pixels that
lie close to the epipolar line corresponding to at both
sides of the projected pixel and at a distance from the
latter below a given threshold (e.g., 5 pixels). Bresenham’s
algorithm for straight lines is applied for efficiently travers-
ing the pixels that fulfill those conditions as well as their
immediate neighbors (thick line in Fig. 3). Among them, the
pixel that yields maximum normalized cross-correlation
with is chosen. This is the pixel that most likely corre-
sponds to the sought physical feature.

Pixel may not have associated any 3D point

and, if it has, it may be subject to small localization errors.

Hence, the centroid, , of the cloud of 3D points associ-

ated with the pixels contained in a small window (e.g., 3x3

pixels) centered at , if any, is used as an estimation of the

location of the physical feature that has been mapped to that

pixel. Based on that centroid and the coordinates of with

respect to frame b, , a new estimation of the lat-

ter, , is defined as the point on the straight line joining

and that is closest to . Finally,

the original point is replaced for a new one whose coor-

dinates are computed as: .
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Figure 5.3: Geometrical relationships between images acquired at two camera frames a and
b respectively. A 3D point observed from the viewpoint a defines an epipolar
line in image bI [17]

Figure 5.3 illustrates the relationship between two camera frames. Each pixel has an image
coordinate Irc and a corresponding 3D coordinate P ; aPrc represents the point in Frame a
whose projection falls on the coordinates (r,c).

To find a point that matches the current point in Frame a, the point is projected to it’s po-
sition on the image associated with Frame b. Points along the epipolar line, which stretches
from the projection of this point, to the projection of the focus of the frame are checked,
and the one with the most normalised cross-correlation is picked as the match. Once this
point is found, its position is changed to the X, Y and Z coordinates of the current point.

In order to find the disparity of pixels, and generate a 3D point, the SVS software uses
the pinhole camera model, so it is natural to use this transform to go from the 3D point
coordinates, to 2D image coordinates. The pinhole camera function µ is defined as follows
(r, c) = µ(aPrc): :

In the case of pure rotation (z ≈ 0)

µ(aPrc) = ([β], [γ]) (5.5)

In case of combined translation and rotation

µ(aPrc) = ([αy/z + β], [αx/z + γ]) (5.6)
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Where αβ and γ are calculated from any pair of available points aPr1,c1 ,
aPr2,c2 :

α = (c2 − c1)/(x2/z2 − x1/z1) (5.7)

β = r1 − αy1/z1 (5.8)

γ = c1 − αx1/z1 (5.9)

The integrate frame function does not modify its second argument, instead it shifts the
points in the first argument into line with their corresponding points in the second.

In order to represent an arbitrary point aPrc in the reference Frame b the following transform
can be performed:

bPr′c′ = M−1
b Ma

a Prc where(r′, c′) = µ(bPr′c′) (5.10)

The integration algorithm proceeds as follows: first the focus of each frame is found, the
focus of a frame is the last column in its homogeneous transform matrix. Let fa denote the
focus of the first frame (Frame a) and fb denote the focus of the second frame (Frame b).
From the previous equation, it follows that to get fa in terms of Frame a, a similar transform
must be performed, i.e. bfa = M−1

b fa and (r′′, c′′) = µ(bfa). bIr′′,c′′ is the projection of this
point, onto Frame b.

Then each point aPrc is shifted into its correct position aP ′
rc in Frame b. This is done using

the following algorithm:

1. Find bPr′c′ by using the equation above.

2. Traverse the epipolar line which joins the points (r′, c′) and (r′′, c′′) using Bresenham’s
line algorithm. Add points which are within 2 pixels of this line to a list of candidate
points.

3. Go through the candidate points, finding the one which has the maximum normalised
cross-correlation with aIrc; call it bIρ,θ.

4. Look around the pixels around bIρ,θ in a small centroid, in order to find a matching
3D coordinate. Calling this point bP ρ,θ

5. Traverse the line joining bfa and bfr′c′ , and find the point closest to the point: (bP ρ,θ+b

Pr′c′)/2. Call this point bP r′′c′′ .

6. Find the corresponding point to bP r′′c′′ : aP r,c = M−1
a M b

b P r′′c′′ .

7. Finally, replace the original point aPrc with this new estimate, aP r,c
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By applying the above algorithm to each point in the frame, over the last few frames, the
points come closer together, getting rid of some of the drifting errors caused by inaccuracies
in stereo vision. Once this process has been repeated k times, as per the original pseudo-
code, the current frame is added to the World Map.

5.8 Modelling the solution

Currently, the world is modelled using a vector of Frames. The model is visualised by
incrementally dumping the contents of all frames into a file, which is later viewed using a
pyVTK script. The path of the robot can be found by simply looking at the last column of
each frame’s transform matrix, as this vector represents the focus of the frame.

This is clearly not an efficient way to store the points, and in the future, the points should
probably be stored in some sort of tree, a KD-Tree or an Octree, so that repeat points can
be amalgamated, and outlying points, which are probably miscalculations, can be discarded
before rendering.

An interesting thing to note here is, in VTK RGB values are normalised to 1. This means
that all the RGB values obtained from SVS need to be divided by 255 before being displayed
by VTK. Not doing this yield a lot of mysterious dark matter in the 3D render.

5.9 Testing Framework

The testing framework can basically be divided into two aspects. Testing individual func-
tions, and testing the algorithm as a whole. To do the former, a small set of unit tests were
developed.

The following tests were performed:

• Cross Correlation Function: two tests were written, one that find the cross correlation
coefficient for a single item in a 1 dimensional array, and another which locates the
centre of a cross in a 2 dimensional array.

• Point Matching: Two consecutive frames in a test run were picked, and the pairings
between them were plotted.

• ICP: First a set of points were transformed by a known matrix, then the ICP regis-
tration phase was run on them, to check if the same matrix is produced. Noisy data
was progressively added, to see how robust the heuristic termination function is.

As well as the above tests, many tests were written to discover the behaviour of SVS,
whereby output from the program was written to image files, and inspected. These tests
uncovered some interesting facts, possibly the most enlightening was that the grey-scale
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image in the SVS data structure does not match with the colour image. The grey-scale
version is shifted slightly to the right. This played havoc with other sections of the algorithm,
until it was discovered.

Once the various components of the algorithm were tested, full runs through the entire
pipeline needed to be performed. To get clean looking data, and test the peculiarities and
characteristics of the SVS binaries, Povray was used to ray-trace and animate some images.
A script called makestereo.py was written to convert the output of Povray into a format
SVS can understand (four bitmaps, two colour, two grey-scale, the colour one being 8bit).
The Povray animation basically simulates the movement of a stereo camera with its lenses
10cm apart. The Povray source file also provides a very concrete ground truth to compare
the output with.

Tests on data obtained directly from the camera were also performed. In order to get
meaningful results from the camera images, the parameters had to be adjusted carefully,
and the conditions needed to be ideal. SVS can get quite confused when there are multiple
lighting sources present, or there is a lot of background texture.

The particular set of test data that was used for most of the testing was that of a set of
cubes in a white area. Tests of more complicated settings are left to future work.

To view the output of these tests, another Python script render.py was written which
renders the points found in a file written by the algorithm, and allows interactive rotation,
scaling and translation. A box is displayed showing the axis, and makes moving and rotating
the points a lot easier.

The results obtained from the tests above are presented 6.4.
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6 Results

This chapter presents the testing framework for this implementation, and shows results
obtained.

Since the basic steps of the algorithm are fairly independent, each of them has been tested
individually. For some stages, multiple implementations were done, and the results of these
different implementations will be presented, as well as the performance of each part of the
algorithm on its own. Finally, results obtained from running the whole algorithm will be
shown.

All the results shown here were obtained on a system running Debian Linux with the 2.6.10
kernel. Other than endianness issues associated with writing binary files, the main code-base
is platform independent.

6.1 How results were obtained

6.1.1 Povray

In order to evaluate the algorithm’s basic functionality, an idealised test framework was
created using povray. This was done by ray-tracing animations from povray scene files and
feeding them into the SVS software system.

Idealised situation

By using ray traced images, a lot of problems caused by lighting are avoided. Also avoided
is dealing with intrinsic properties of the camera, such as lens distortion, and the camera
set up. The lenses are always in focus, identical and parallel.

This however, does not guarantee accurate 3D points. If the surfaces being “seen” are
smooth, the algorithm misses them completely. If the objects are either too close to the
camera, or too far away, their disparities are miscalculated entirely. In one instance, an
image containing two cubes was observed to have one cube at the front (correct) and another
stretched out between the first, and where it should be. This is shown in Figure 6.1 on the
next page and Figure 6.2 on the following page.
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Figure 6.1: Incorrectly identified second cube - 3D window

Figure 6.2: Incorrectly identified second cube - SVS window

In order to get nice values from SVS, an idealised environment was created, diffused lighting
(soft shadows) and desired surfaces textured.

Even with the best of settings, SVS is still a heuristic, it doesn’t give idealised points.
The 3D point clouds are littered with erroneously calculated values, which give even the
simulations a aura of realism.

6.1.2 Real World

The world is a scary place. In order to get nice, clean data from the camera the parameters
have to be set properly, the lenses must be completely in focus (nudging them changes
their focus), and the movement must be slow, and smooth. There must only be a single
light source, windows and sunlight confuse the software. One must be careful to not cast
a shadow on the scene while photographing it, and, above all, the data collection must be
done as quickly as possible, as the SVS user programs tend to segfault fairly often, and as
soon as everything is configured.

Once the data was collected, it was stored on a CDROM and reused for a multitude of tests.
Although several CDs worth of data were collected, only one or two sets were actually usable
(the other sets had bad lighting which confused the stereo software), and this is the data
used in the tests described below.
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6.1.3 Unit Tests

A series of unit tests were designed to test various stages of the algorithm independently.
The results below show a few of the outcomes of such tests.

6.2 Performance of Different Stages of the Algorithm

6.2.1 Obtaining point clouds

SVS was used to obtain point clouds, Figure 6.4 on the next page shows the point-cloud
obtained by using an image generated by povray. This shows that even using povray data,
mistakes are quite common.

Data obtained from the camera is shown in Figure 6.3.

Figure 6.3: A set of blocks and their 3D projection in SVS

6.2.2 Filtering and selecting points

Figure 6.7 on page 48 shows the Harris corner detector being run on the image in figure 6.6 on
page 47. It was found that when using a Harris corner detector, an average of 31 corners
had a corresponding 3D coordinate. By using a Canny edge detector, this number was
increased to 561. Figure ?? on page ?? shows the Canny edge detector being run on the
same image. The graph in Figure 6.5 on page 47 illustrates the difference.

The rises and falls in the graph can be attributed to the 3 objects rotating, sometimes
occluding each other from view. A number of observations can be made from this graph:
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Figure 6.4: A povray rendered cube and its 3D projection in SVS

• The method using the Canny edge detector always superior to the Harris algorithm,
even in minima. This clearly shows the advantage of using the Canny detector.

• In both methods, there is a huge variation in the number of points detected. These
maxima and minima correspond to the number of objects visible to the camera.
This means that relying entirely on geometric representations for determining fea-
ture saliency may not be a good idea, as there is a good chance not enough points
will be picked up.

6.2.3 Matching points

Initially a unit test was written to test the cross correlation function. The images in
Figure6.9 were given to the max cross correlation function, the centre point given to
the function was the point (3,1), the centre of the cross in the right hand image, and the
search offsets were given as all the pixels in the left hand image, the algorithm correctly
identified the pixel at (3,2) in the right hand image as the corresponding point. Various
different window sizes were tried, and correspondence with self was tested. All results were
positive.

Even though the cross correlation function works properly, there is no guarantee of correct
correspondences when using it. Figure 6.11 shows two greyscale images, with the pairings
shown in coloured dots. This image illustrates that although using cross-correlation is a
reasonable heuristic, it is by no means perfect. Many points in a 100x100 window can
potentially look identical. A good example of this is shown in Figure 6.10. Because of
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Figure 6.5: Graph illustrating the number of 3D points that match features for each frame

Figure 6.6: Scene which feature detection was performed on

the shadow, the corner in the wall will be picked up as an edge, however, the colouring is
uniform from the ground up. Since the match pairs function searches from the upper left
corner of a window, down to the lower right corner, the point with the highest correlation
will be the lowest point in that window. This gives a bias towards lower points, skewing
the heuristic. Similarly, with grass, right most points will be favoured by the algorithm.
This same issue also comes up with uniform patterned images. There are two cubes shown
in 6.11. The left hand side, chequered one has plenty of 3D point associations found by
SVS. In contrast, the right cube barely has any, and there are no matches between the 3D
points and the edge points, so it gets ignored completely in this stage of the algorithm.
The trouble with the left hand cube, however, is that the different squares on it all have
very highly correlated with each other, causing the same bias that appears with the walls
to happen there. There are a lot of mismatches between those frames.
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Figure 6.7: Sphere and cubes image after corner detection (in reverse video)

Figure 6.8: Sphere and cubes image after edge detection

The SIFT algorithm was run on the same pair of images, and the results are shown in
figure 6.12 on page 53 for comparison. The SIFT algorithm does both feature detection
and correspondence, so it could take the place of both the max cross correlation and
match pairs functions. Close inspection of the image reveals that even SIFT has a lot of
trouble with it too.

6.2.4 Obtaining a transformation matrix

The ICP algorithm was used to calculate a transform matrix. As explained in the previous
chapter, the ICP registration stage will only compute a correct transform if the pairings are
all correct. This condition will of course never be satisfied initially, unless the pairings are
generated artificially. This was tried in a unit test, to verify the algorithm was implemented
correctly.

The iterative part of the ICP algorithm happens when the pairings are altered in some way,
and the registration phase is rerun. This process happens until some convergence criteria
is met. In the algorithm proposed by Garcia et al, pairings are not recomputed; instead,
each time the registration phase is run, the distance between the members of each pair
(after being placed the same point of reference) is computed. The median distance, and
the median absolute deviation (MAD) of the distances are computed, and pairs which have
a distance that exceeds twice the MAD plus the median are discarded, and the algorithm
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Figure 6.9: Images used to test the cross-correlation function

Figure 6.10: Povray cube shown next to the corner of a wall

runs again.

Once no more pairs are discarded, the algorithm terminates and the transform matrix is
returned. An experiment to test this heuristic was run as follows:

1. Generate a set of points.

2. Transform them all by a known transform matrix M.

3. Run ICP algorithm over them.

4. Pick 3% of the pairs at random.

5. Swap the values of these pairs randomly.

6. Repeat from step 2.

The results from the above algorithm are shown in figure 6.13 on page 54.

In this graph, each iteration represents 3% of the points being altered randomly; thus after
35 iterations, the data is essentially completely random (changing 3%, 35 times, 0.03 ∗ 35 =
1.05, so just slightly over 100% of the points have been altered). This graph shows that the
mean error this version of ICP follows the curve 146∗(1−0.97x) with respect to the number
of random pairings, meaning that when random pairings are given, the mean distance will
roughly equal 146 units. In order for the algorithm to converge, the pairings must have fairly
high certainty, otherwise errors can not be recovered from through the iterative process, at
least, not with the heuristic proposed by Garcia and used in this algorithm.
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Figure 6.11: Two consecutive grey scale images, with correspondences marked in colour

ICP not converging correctly is a major problem with this approach. Even if the matrix
is just a couple of pixels off, this adds up over many iterations, producing a ‘snake’ effect,
as seen in figure 6.14 on page 54. This effect is characterised by a series of objects being
mis-matched by just a few pixels at each iteration. In the end, instead of having a single
object such as a cube, a whole series of them is produced.

A potentially more serious problem however is the ICP algorithm not just getting it a
little wrong, but getting it completely wrong. On each iteration, pairs that deviate too far
from the median distance are discarded. This heuristic works if most pairs are correctly
matched up, and the wrong pairs are removed each time; however if the majority of pairs
are incorrectly identified, or there’s a large cluster of incorrect pairs found (perhaps due
to noise, or an incorrectly identified feature), the algorithm can delete the wrong pairings.
Eventually, the number of pairings decays down to single digits, sometimes just two, and
this produces an essentially random transform. This can be enough to totally flip the points
in any direction, and cause general havoc. This problem is discussed in greater detail in the
evaluation section.

6.2.5 Modelling

The results were modelled in both colour, and in monochrome. Monochrome modelling
had the advantage that the general shape of the structures was more easily visible, with
the distractions of colour. Colour however let exact correspondences be seen with greater
ease.

6.3 Results From Whole System

This section describes the outcomes of running the entire algorithm from start to finish.
Again, the results are derived from both simulated, and real data.
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Povray Images

In one experiment, the scene shown in figure 6.15 on page 55 were put through the SLAM
algorithm. The initial state of the world, after a single frame can be seen in figure 6.16 on
page 55. Here some of the chequered cube is occluded by the coloured cube. Even at this
stage, SVS mistakes can be observed.

After 3 frames, more points have been integrated, as seen in figure 6.17 on page 56. The
green and red colours on the coloured frame are visible here, and have been correctly
matched with previous frames.

After 7 frames the result is shown in figure 6.18 on page 56. The problem with walls is
really becoming visible in this frame. Even though the structure of the cubes are correct,
the colouring is not. This is because the disparity of the walls, and of the cubes are both
calculated incorrectly. Because an edge detector was used, these points haven’t been used
for calculating the transform, but their presence still makes the image look noisy.

After 18 frames, there are a lot more points in the map. This is shown in figure 6.19 on
page 56. Again, structurally the cubes are sound, however the colours look even more
noisy.

Images from the camera

In order to test the algorithm on a real camera, the stereo camera was moved around the
scene pictured in figure 6.20 on page 56. Figure 6.21 shows the initial position of the camera.
In this frame, only 3 of the 5 blocks are visible.

After 4 frames, and extra two blocks (the yellow block, and green triangular prism) are
added to the scene. Figure6.22 shows that the points belonging to the previous blocks have
all been integrated in correctly. The column visible at the back is the crack between the two
slabs of white cardboard placed behind the scene. It was probably ignored by the pairing
algorithm as the cross-correlation between the pixels of adjacent frames would have been
too low, the grey visible is just a shadow that would have changed in colour and position.

Even after 30 frames, the blocks are still well formed. There is little error visible from
mismatched pixels and the positions look correct. This remains the case for at least another
40 frames or so.

6.4 Running Time and Resource usage

The following benchmarks were taken on an AMD Athlon XP 2600+ (1913.142 MHz)
running Debian Linux 2.6.10. This machine has 1 GB of RAM and an additional 500
MB of swap space.
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The implementation in this thesis is divided into two programs, read svs which interfaces
with the SVS binaries, and collects stereo data. This program then writes the data to
binary files, which are read by the second program slam which runs the SLAM algorithm.
It is worth mentioning that read svs also performs feature detection.

Without writing to the disk, read svs took 12.03s in total to process 200 frames, each of
size 320x240 pixels. Writing to disk increased this time to 13.50s. This equates to about
0.0675 seconds per frame.

The slam program spends around 10-14 seconds per frame, however, much of this is due
to writing to disk. When writing to disk was turned off, the program processed 200 frames
in 1350.50 seconds, which equates to just over 6.75 seconds per frame. All together, the
program can process a single frame in under 7 seconds. This is comparable to Garcia et
al’s result of 12 seconds per frame, on an 800Mhz CPU.

The program uses a fair bit of memory, mostly because all frames are kept in memory
until the program terminates. When processing the 200th frame, the program was using
about 53% of the system’s available memory. This number can reduced dramatically by
not storing redundant information about points by storing them in a tree structure.
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Figure 6.12: Two consecutive grey scale images, with correspondences found using SIFT
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Figure 6.13: Results of experiment to verify the robustness of the ICP convergence heuristic

Figure 6.14: “Snake” like output from several iterations of the algorithm
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Figure 6.15: Two cubes, as rendered by Povray

Figure 6.16: Two cubes, initial 3D points
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Figure 6.17: Two cubes, after 3 frames

Figure 6.18: Two cubes, after 7 frames

Figure 6.19: Two cubes, after 18 frames

Figure 6.20: A view of all 5 blocks in the scene
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Figure 6.21: Initial camera frame

Figure 6.22: Frame 4, two extra blocks detected and placed on the map
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Figure 6.23: Frame 30, All 5 blocks visible, and still correctly placed
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7 Evaluation

In the previous chapter, results from running various parts of the system, as well as the
algorithm as a whole were presented. This chapter aims to extrapolate on these results and
evaluate both the strengths and the weaknesses of the system developed.

The aim of this thesis was to design and implement SLAM on the TXT-1 Monster truck.
The goals were initially stated as below:

• Use a sensor that is small in both weight and footprint.

• Build a map that allows for motion with 6-DoF.

• Accurately localise on the generated map, at each stage of the process.

The entire implementation of this thesis is based around the use of a stereo camera head.
This apparatus has been successfully fitted on the truck, and thus the first criterion has
been met.

The system developed is capable of localising and mapping regardless of the angle or di-
rection of motion, so long as it’s smooth. Jerky movements produce sudden blur on the
camera, making the task of feature extraction and matching far more difficult. Techniques
such as smoothing the image before feature extraction can be used to compensate for this
situation, but it is ultimately a problem inherent to vision based techniques.

At each step of the algorithm the pixels that have had their 3D coordinates computed are
transformed, and then plotted on a world map. This map can then be used to reconstruct
a scene, or to locate an object of interest such as a victim in a disaster site. This map
however, is not a full map of the environment, and cannot be used to perform autonomous
navigation. Due to the nature of stereo vision, smooth un-textured surfaces are not detected
at all. This means that if a robot to solely rely on data obtained from a stereo camera to
navigate, it will almost certainly run into a smooth surface such as a wall. Of course, this
system could quite easily be extended to take advantage of sensors capable of providing
more robust feedback on range. By complementing this technique with data obtained from
a range sensor, such as a laser range finder or swiss ranger (a small time-of-flight based
sensor measuring range), full mapping can be performed.

Using ICP at each stage of the process ensures that a localisation matrix is generated for
every frame, and thus, for every position of the robot.

In implementing this algorithm an extensible system was designed. Any stage of the al-
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gorithm can be replaced with an alternative implementation quite easily and tested using
the testing framework developed. There is no coupling between the source of the point-
cloud, and the rest of the algorithm, so the input method and sensors used can be altered
trivially.

Other than mounting a correctly calibrated camera, with its lenses in focus, no calibration
is necessary to bootstrap this system. The agent on which the camera is mounted can also
be altered with no ill effect, so theoretically this solution should be able to use any sensor
or combination of sensors that provide range, bearing and colour data.

Much of this thesis was based on the technique proposed by Garcia et al [17], however,
certain improvements to parts of the algorithm yielded far better results. In the second
stage of the algorithm the feature detection was done using a Canny edge detector, instead
of the Harris corner detector recommended by Garcia. The main problem with the Harris
corner detector was that it produced far too few points. This meant that very few of them
had associated 3D points, which in turn meant that the ICP algorithm had very few pairings
to start off with. Starting off with way too few pairings, and discarding many of them in
the iteration step meant that the transform matrix produced was essentially random. The
Canny detector produces far more points, and these points have greater correspondence to
3D points generated by SVS. By using a Canny detector the performance of the algorithm
increased dramatically.

Another improvement made was a slight alteration in ICP algorithm’s terminating case. As
mentioned before, the outcome of the ICP registration phase becomes fairly unpredictable
once the number of pairings drops to single digits. The iterative step of the algorithm
eliminates those pairings whose distance in local 3D space differ by more than a certain
margin above the median distance. The iteration stops when no more points are discarded
after the registration step. This process works well if most of the initial pairings are correct,
and those which are not are not clustered together. If the algorithm starts eliminating
correct pairs in favour of those which are not, it degenerates very rapidly into ICP using
only a few points, in many cases, just 2. In order to delay the onset of such a problem, the
stopping heuristic was relaxed somewhat. Instead of stopping only when no eliminations
were made, the algorithm stopped when the total number of eliminations fell below 10.

Both the above problems illustrate a major shortcoming of the algorithm — its total depen-
dence on the calculation of a correct transformation matrix. In the implementation section,
it was shown that to derive the localisation matrix of Frame b, the following calculation is
done:

Mb = Ma ·a Mb (7.1)

where matrix aMb is the transform that takes the points in Frame b to the coordinate system
of those in Frame a and Ma is the localisation matrix of Frame a and is initially set to the
4x4 identity matrix. This equation, which is central to the entire algorithm, means that
if a single frame’s transformation matrix is miscalculated, even by a small amount, all the
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subsequent frames will also be wrong. This, at best, causes the “snaking” effect mentioned
in the previous chapter, and at worse causes the entire world to flip in one direction or
another, due to a completely degenerate matrix.

The ICP registration phase is very accurate in the absence of badly matched pairs, but this
accuracy drops exponentially in relation to the number of random pairings in the sample.
This makes the previous stages of the algorithm, the feature extraction and matching,
extremely important to get right. In future work different algorithms for finding features
and pairings should be experimented with, in order to determine what sort of heuristic gives
more accurate matchings. The heuristic employed in the ICP algorithm itself also needs
careful consideration. The accuracy of the heuristic in the presence of mismatched pairs is
essential, and this property can be tested using the methodology developed in the previous
chapter.

Even if the feature matching and ICP heuristic are perfected, there is one major contributing
factor to ill-formed maps remaining. This is measurement noise and miscalculated 3D values
obtained at the stereo processing acquisition and processing phase.

As illustrated multiple times in chapter 6, SVS does not generate perfect 3D points, even
if the lenses on the camera are perfect (as in the simulated scenes on Povray). Erroneously
calculated points are common, even in the simplest of scenes. When erroneous points
correspond to features in the image, they result in serious problems when calculating the
transformation matrix. Edge detection helps prevent this to a great extent, however even
on edges, miscalculated points are often a problem. When these points occur in places other
than edges, the result is a map that’s distorted, and looks noisy.

A semi-systematic source of such distortion in the output of the SVS program is the back-
ground of a scene. A “frill” of background is often picked up with the coordinates of
the foreground image, so that the foreground image looks larger than it actually is, and
surrounded by discoloured, random looking pixels. Although these pixels are not used in
calculating the transformation, they pollute the final outcome quite severely, at times mak-
ing it unidentifiable. For this algorithm to produce a robust 3D occupancy grid, the sources
of such noise need to be identified, it it has to be systematically removed.

A possible way to do this could be to segment the image into background and foreground
areas, and ignore the background pixels completely. This however, is beyond the scope of
this document and will be relegated to future work.

In summary, the solution presented in this thesis is a start to solving the problem of per-
forming SLAM using stereo vision. Although it appears that the algorithm is theoretically
sound, there is a definite need for improvement in certain stages of it. Once it is coupled
with a few extra sensory inputs and more robust ways of dealing with noise, the performance
of the algorithm should improve dramatically.
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8 Future Work

8.1 Advanced filtering of data

Stereo vision is not perfect, currently, the implementation only removes points that are off
at infinity (greater than 400 units away) or are very close to the camera frame.

Better statistical modelling of the data from SVS could result in better maps. SVS, when
configured correctly, tends to sample in clusters, so points that are away from clusters are
probably noise, and computed incorrectly.

8.2 Blur and noise tolerance

The current system is unable to deal with sudden camera movements which cause blur-
ring. By smoothing the image before doing feature detection, this could potentially be
improved.

8.3 Image Segmentation

As mentioned in the evaluation, the cause of much of the distortion in the final output is
parts of the background being picked up in the foreground. If there was an accurate way
of describing what is foreground and what is background (or which object the different
parts of the scene belong to), incorrectly identified points could potentially be filtered out
and discarded. In [6] Cole et al segment a laser scan according to the amount of “local
interest”. Some segments are more interesting than others because they come from unusual
or surprising parts of the scene. Scan matching based algorithms such as the one presented
in this thesis tend to excel when the scan is complex. The opposite is true for feature based
representations (a typical EKF SLAM implementation has a very restricted feature set size,
adding more features adds complexity).
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8.4 Better modelling

Currently the World Map class simply stores the world as a vector of frames. The three
main disadvantages of this are:

• There is a huge amount of redundancy. Each point in the image is sampled many
times, and all of these samples are stored independently. This means that the algo-
rithm progressively stores more and more data, and the program eventually gets killed
by the operating system for running out of memory.

• There’s no way to make intelligent decisions about rendering. Currently, every single
point gets rendered.

• By having a proximity model of the points, outliers can be filtered out easily. A flat
list of points doesn’t provide this information

By storing the points in a tree, either a -Tree or an Octree, duplicate nodes can be illu-
minated. Highly sampled places can also be marked as points whose bearings have higher
certainty. Rendering, which is now done externally from a text file can also be done online,
showing the model in real-time.

8.5 Using Additional Sensors

By using a range finding sensor as well as a visual sensor the quality of the data obtained
could be greatly improved. If range information is available, the problem that stereo vision
has with un-textured or smooth surfaces would also disappear, allowing a map that can be
used for navigation to be created.

Other sensory devices could also complement the algorithm, for example, the inertial mea-
surement unit on the track could potentially be used to sanity check the ICP transform,
and odometry could be used to check if the translation component of the transformation
matrix is correctly calculated.
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9 Conclusion

The goal of this thesis was implementing a system which does Simultaneous Localisation
and Mapping on the TXT-1 truck. To do this an extensive literature survey was conducted,
and a solution presented in the survey was implemented.

The algorithm presented in this thesis works with a stereo camera, which can be easily
mounted on the truck. The major drawback of this approach was the fragility of the
algorithm used. There is a great reliance on the heuristics employed yielding the correct
outcome. Another problem was the essentially unreliable nature of stereo processing.

By augmenting this technique by more robust heuristics, and filtering out “bad” data more
reliably, the results can probably be improved a lot. Another interesting technique to try
is using extra sensors to verify the heuristics employed.

Although the programs developed in this thesis do not accurately localise and map the
agent’s environment, a framework for future work using a similar technique has been put in
place, together with a fairly extensive testing suit for evaluating results. A few ideas about
future directions this research could take have also been presented. It is envisaged that
by obtaining better quality input, and matching points more accurately the overall result
could be improved dramatically.
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10 Appendix

10.1 User Manual and Installation Guide

The software written to accompany this thesis is available on the CDROM attached. The
latest version can be downloaded from:

http://www.cse.unsw.edu.au/~saraf/slam/

or by using the Darcs version control system:

darcs get http://www.cse.unsw.edu.au/~saraf/slam/

10.1.1 Introduction

The source provided will compile into two binaries:

• read svs which given a directory of svs-compatible images, will read them in sequence
and run stereo processing on them, saving the result of each frame in a separate binary
file, in a directory called bindata in the current working directory.

• slam which given a directory of binary data generated by read svs will read the
frames starting from the first frame saved. Optionally a second argument to slam
can be given to specify the starting frame number. This program saves a map of the
world for each frame processed in a directory called dump under the current working
directory.

Also supplied is a pyVTK script titled render.py which can render the output of the slam
program using VTK. A monochromic version called grender.py is also supplied.

10.1.2 Package Layout

The package root directory contains four directories:

• slam — Contains source for the slam and read svs programs. A copy of the Newmat
library source is also found here.
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• rendering — Contains the scripts render.py and grender.py. Used for rendering
the output of the slam program.

• povray — Contains the python script makestereo.py as well as a directory con-
taining assorted povray scenes which can be used or modified for rendering.

10.1.3 Pre-Requisite Packages

In order to compile the slam program, the following standard libraries are required to be
installed on the system: libjpeg, libpng and libtiff. In addition, the Newmat matrix library
is required. The source for this library is provided in this distribution.

To compile the read svs program, the SVS binary package and headers must be installed on
the system. Additionally, the Vigra library available from http://kogs-www.informatik.
uni-hamburg.de/~koethe/vigra/ must be installed before proceeding.

To run the renderer, the VTK must be installed. In particular the pyvtk extension must
be installed. This option is off by default in the source distribution, but available in the
Debian package automatically.

For generating test data from Povray, Povray needs to be installed on the system. The
python script which converts a povray animation file into SVS readable data needs the
python imaging library (PIL) to be available.

10.1.4 Installation

The following steps executed in order should yield you working binaries for the project,
provided the paths are all set correctly, and the pre-requisite packages are all installed.

1. Go to the package root directory.

2. cd slam/newmat

3. make

4. cd ..

5. make

6. cd read svs

7. make

The python scripts are interpreted, and require no installation.
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10.1.5 Usage

The first step is data collection. You can either use the smallv application which comes
as part of the SVS package to generate data from the camera (use save frame buffer to
save the camera frames to disc), or you can generate them artificially using povray.

To use povray, first write a povray source file. You can also use the examples found in the
povray/src directory. Now, simply run the makestereo.py script to generate a directory
filled with data SVS can use. Running this script will bring up a povray rendering window,
which you can close with no ill-effect.

Optionally (this is probably a good idea), open up frames in smallv and then save one to
disk. This saves a *.ini file for the image, which you can copy for all the frames. A one line
shell script to do this can be printed by running makestreo.py with no arguments.

Next, you want to generate binary data from this sequence of frames. To do this, simply
run the read svs program with the path to the first frame in the sequence you want to use.
For example:

./read svs /cdrom/run5/final001-C.bmp

will process the sequence of images found in the directory /cdrom/run5.

A directory called bindata must exist in your working directory for this program to work,
otherwise it will not write any output files.

Once you have the binary data, you can run it through the SLAM algorithm by simply giving
the slam program the directory storing the binary data as its first argument. An optional
second argument is the starting frame number. slam will write output to a directory called
dump in the current working directory. It will fail if this directory doesn’t exist.

After all this data is processed, and you terminate the program, you can view the map
it created using the python rendering script. Simply supply the script a slam output file,
e.g.:

./render.py dump/33world.pts

You can move around and inspect the map from different angles by using the mouse in the
VTK window. The map can be translated, rotated and scaled by moving the box frame
that appears in the window along with the map.
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